
Copyright 2019, Nordic Semiconductor ASA 

Nordic Semiconductor Sniffer API Guide 
Version 0.5 

 
 

The Sniffer API guide provides the documentation of the Python API used to 
interface with the nRF Sniffer for Bluetooth low energy. The nRF Sniffer is available 
for download at nordicsemi.com. 
 
Revision History 
Revision Changes 
0.1 Initial version 
0.2 Added description of LED and GPIO. 
0.3 Updated documentation to reflect API 

changes after 0.9.7 
0.4 Updated documentation for version 2.0.0 
0.5 Updated documentation for version 3.0.0 
 
  



Copyright 2019, Nordic Semiconductor ASA 

Introduction 
 
The Sniffer API is a Python API that allows scripted use of the Nordic Semiconductor 
BLE Sniffer. It allows discovery of devices and sniffing of a single device. It provides 
access to all the BLE packets received by the sniffer and the devices discovered. 
 
The sniffer consists of four parts as seen in Figure 1. Code that uses the Sniffer API 
directly will effectively replace the “Sniffer extcap” and “Wireshark” components. 
 
 

 
Figure 1 - The parts of the sniffer. 

The “Sniffer extcap” is included under extcap/nrf_sniffer.py (and the helper script 
extcap/nrf_sniffer.bat for Windows). See 
https://www.wireshark.org/docs/wsdg_html_chunked/ChCaptureExtcap.html for 
more information on how the extcap system works. Note: you do not need to use the 
extcap if you are using the Sniffer API directly. 

Dependencies 
 
The API has been developed using Python 3.7, but should be compatible with any 
Python runtime 3.5 and above. It is however not compatible with Python 2. The API 
also requires one third party Python library: 

1. Pyserial (cross platform) version 3.4 or higher. Download using pip: “pip 
install pyserial>=3.4” or use the included “requirements.txt”. 

 
See the Sniffer User Guide for additional information. 

Using the Sniffer API 
 
Getting Started 

1. Install dependencies.  
2. Include the SnifferAPI folder in your Python project. 
3. Import the API with  

from SnifferAPI import Sniffer 

4. Optional: discover a list of the connected sniffers using: 
           from SnifferAPI import UART 
           ports = UART.find_sniffer() 

5. Instantiate the Sniffer class with e.g 
           # For firmware < 2.0.0, use baudrate=460800 or omit 
baudrate 

mySniffer = Sniffer(portnum=”COM40”, baudrate=1000000) 



Copyright 2019, Nordic Semiconductor ASA 

6. Start the Sniffer with  
mySniffer.start() 

example.py is an example program with explanations in the comments. 
 
Overview 
The API consists of 5 classes in 3 files: The Sniffer class in Sniffer.py, the DeviceList 
and Device classes in Devices.py, and the Packet and BlePacket classes in Packet.py. 
The exceptions in Exceptions.py are also part of the API. The entry point for the API 
is the Sniffer class (retrieve packets and devices through the methods in Sniffer). The 
last pages of this document (and also the documentation.html file) contain a complete 
documentation of the API. 
 

An overview of the levels below the Sniffer module 
 
Object/Module hierarchy 
During normal operation, the Sniffer object interfaces only to the SnifferCollector 
object which acts as a hub for the flow of packets. The SnifferCollector object reads 
packets from UART through its PacketReader object and sends packets over named 
pipe to Wireshark. It also stores all packets in a capture (.pcap) file through its 
CaptureFileHandler object, and keeps an internal buffer of packets. In addition, the 
SnifferCollector object keeps a list of devices which are advertising in the vicinity. 
 



Copyright 2019, Nordic Semiconductor ASA 

 
Figure 2- Object hierarchy behind the Sniffer API 

 

 
Figure 3- The flow of packets through the API. 

Note: Command packet flow from the SnifferCollector to the UART is not 
represented in the above diagram. 
 
Threads of operation 
The Sniffer system contains 3 separate threads which are running in addition to the 
main context (user thread). They are: 
 

1. The LogFlusher thread which regularly flushes the log to file. 
2. The Uart thread which is used to read data from the sniffer’s serial port. 
3. The Sniffer thread. This is the main thread which uses the data read from the 

serial port to parse packets and distribute them to the User Code and the rest of 
the sniffer system. 

 



Copyright 2019, Nordic Semiconductor ASA 

 
OS specific code 
The API should not contain any OS specific code. The modules that previously had 
OS specific code have been removed in a previous version of the API. 
 
Establishing a connection between the API and the firmware 
As explained below, the firmware sends received ADV packets in the SCANNING 
state. The Sniffer constructor can take the port number and the baudrate of the 
firmware as arguments. The UART.py file contains a helper function find_sniffer 
which lets you find the connected sniffers if you do not know their port names. Use a 
baudrate of 1 000 000 for sniffers of version 2.0.0 or greater, otherwise use a baudrate 
of 460 800. 
 
  



Copyright 2019, Nordic Semiconductor ASA 

Appendices 
1. State change description  



Copyright 2019, Nordic Semiconductor ASA 

Firmware States (simplified) 

 

SCANNING (Initial state): 

 Scans advertiser packets. 

State change: If the sniffer received a "follow device X" (REQ_FOLLOW) 
command, it will go to the FOLLOWING state. 

FOLLOWING: 

 Only packets from device X will be received. 
 All packets sent by device X will be received. 
 All SCAN_REQ packets directed to device X and corresponding 

SCAN_RSP packets will be picked up. 
 All CONNECT_REQ packets directed to device X will also be 

picked up. 

State change: 



Copyright 2019, Nordic Semiconductor ASA 

 If the sniffer receives a CONNECT_REQ packet, it will go to the 
CONNECTION state. 

 If the sniffer received a "scan" command, it will go to the 
SCANNING state. 

CONNECTION: 

 The sniffer will follow the connection. 
 All packets in the connection will be received. 

State change: 

 If a timeout occurs (no packets received for a length of time defined 
by the negotiated connection supervisor timeout, typically 4 seconds) 
the sniffer will go to the FOLLOWING state. 

 If one of the devices in the connection terminate the connection the 
sniffer will go to the FOLLOWING state. 

 If the sniffer received a “scan” (REQ_SCAN_CONT) command, it 
will go to the SCANNING state. 

LED Configuration 
 

State LED1 LED2 
SCANNING Toggle when packet received OFF 
FOLLOWING Toggle when packet received OFF 
CONNECTION Toggle when packet received ON 
 


